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Abstract� A behaviorally expressive set of diagrammatic languages for modeling object
oriented sys


tems is presented� It constitutes the constructive subset of UML� and is supported by Rhapsody� a tool

that enables model execution and full code synthesis�

� Introduction

This paper reports on an e�ort to develop an integrated set of diagrammatic languages for modeling
object�oriented systems� and to construct a supporting tool� We want our models to be intuitive
and well�structured� but also behaviorally expressive and rigorous� The goal is to support full
executability and dynamic analysis� as well as automatic synthesis of usable and e�cient code in
object�oriented languages such as C��� At the heart of the modeling method is the language of
statecharts �H�� for specifying object behavior� and a structured object�model language for describ�
ing classes� and their structure and inter�relationships� Objects can interact by event generation or
direct invocation of operations�

Our approach is consistent with the recent UML e�ort �Ra�� First� statecharts have been adopted
in UML and in its main precursers 	the Booch method �B� and OMT �R��
 as the main medium
for specifying behavior� Second� we have participated quite extensively in the UML de�nition e�ort
	led by the group from Rational Corp�
� in order to ensure that UML will be fully consistent with
our work� In fact� our language set can be viewed as a �UML core
� constituting the constructive
portion of UML� but coming complete with a fully worked out behavioral semantics and a powerful
supporting tool�

In the interest of keeping the exposition in the paper manageable� we leave out some technically
involved topics� such as multiple�thread concurrency and active objects� which will be described else�
where� The supporting tool� Rhapsody� which is available from i�Logix� Inc�� will also be described
in detail separately��
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we used the preliminary name O�Mate for this tool�
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� Background and overview

Statecharts were conceived of by the �rst�listed author in ����� In the �belatedly published	 paper
that �rst presented them 
H��� statecharts were portrayed in isolation� as a visual formalism for
specifying 
raw� reactive behavior� Adopting statecharts as the behavioral component of a general
system�modeling approach is quite a di�erent matter� since the links between the various aspects
of a system�s description can be subtle and slippery� Modeling approaches ought to be detailed
and precise enough to enable model execution� dynamic analysis and code synthesis� For this� the
language set must be rigorously de�ned and 
closed up�� Any possible combination of graphical
and�or textual constructs must be clearly characterized as syntactically legal or illegal� and all legal
combinations must then be given unique and formal meaning�

Over a decade ago� a full language set was built around statecharts� based on the function�
oriented structured�analysis paradigm �SA	� see 
H�� HP�� Statecharts� used for behavioral descrip�
tion� were closely integrated with a structured language for functional decomposition and data��ow�
called activity�charts�� Since SA methods are widely regarded as su�ering from a discontinuity
problem in transition to design and reuse� many people recommend complementing function�based
approaches with ones that follow the object�oriented �OO	 paradigm� This change is one of the
most signi�cant in software engineering in recent years� Accordingly� we embarked on an e�ort
to develop a set of languages for object modeling� built around statecharts� and to construct a
supporting tool with full executability and code synthesis capabilities�

The basic idea is to model the structural properties of classes in a clear hierarchical manner�
and to integrate the resulting description with a precise speci�cation of behavior over time� using
statecharts� Since classes represent dynamically changing collections of concrete objects �instances	�
and since the structure itself is dynamically changing� the model must address issues like the ini�
tialization of� and the reference to� real object instances� the delegation of messages� the creation
and destruction of instances� the initialization� modi�cation and maintenance of links representing
association relationships� etc� We must also address aggregation and inheritance from a behav�
ioral point of view� All this makes the problem of combining structure and behavior much harder
than in an SA�based framework� And it is particularly delicate in the realm of highly reactive
systems� which are characterized not by data�intensive computation but by control�intensive� often
time�critical� behavior�

The object paradigm started in the programming languages community� but was later adopted
on an abstract level too� in the form of methodologies that are more appropriate for system mod�
eling� see� for example 
B� CD� R�� SGW� SM�� Most object�oriented modeling methodologies o�er
graphical notations for specifying the model� They typically have ER�style diagrams for specifying
classes of objects and their inter�relationships� and means for describing the interface and capabili�
ties of the objects themselves� A state�based formalism is usually adopted for specifying behavior�
and all of the methodologies listed above recommend statecharts �or some sublanguage thereof	 for
this� However� in many cases such methodologies do not address dynamic semantics adequately� so
that the precise behavior of models over time is not always well�de�ned� One major motivation for
our work was to eliminate this crucial shortcoming�

�A third language� module�charts� was used to specify physical decomposition� See �H�� for the motivation and
�philosophical� aspects of this e	ort� and �HP� for a full description of the languages� This language set underlies the
Statemate tool �H��� built to enable executability� analysis and code�generation�
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Our approach involves two constructive modeling languages� object�model diagrams and state�

charts� and a re�ective language� message sequence charts �MSC
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� The rail�car example

We illustrate the approach using an automated rail�car system example �see Fig� ���� Six terminals
are located on a cyclic path� and each pair of adjacent ones is connected by two rail tracks� one
for clockwise travel and the other for counter�clockwise� Several rail�cars are available to transport
passengers between terminals� There is a control center that receives� processes and sends system
data to the various components�

Each terminal has a parking area containing four parallel platforms� each of which can park a
single car �see Fig� ��� The four rail tracks that are incident with a terminal� two incoming and two
outgoing� are each connected to a rail segment that can be adjusted to link to any one of the four
platforms� The terminal has a destination board for passenger use� containing a pushbutton and
indicator for each destination terminal� Each car is equipped with an engine and a cruise�controller
for maintaining speed� The cruiser can be o	� engaged or disengaged� The car is to maintain the
maximal speed that will guarantee that it will never be within 
� yards of any other car� A stopped
car will continue its travel only if the smallest distance to any other car is at least ��� yards�
A car also has its own destination board� similar to the one in the terminal� The control center

�The example was inspired by the speci�cation appearing in a ���� manuscript by Vered Gafni� titled �Automatic

Transportation System��
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communicates with the various system components� receiving processing and providing system data�

Here are some typical scenarios of the system �sometimes called �use cases� �J��� The 	rst two
depict interactions between a car and a terminal� and the last two between a passenger and the
system


� Car approaching terminal
 When it reaches ��� yards from the terminal� the car will be
allocated a platform and entrance segment connecting it to the incoming track� If the car is
to pass through without stopping� it is allocated an exit segment too� If the allocation is not
completed within 
� yards from the terminal� the car is stopped and delayed until all is ready�

� Car departing terminal
 A car will depart the terminal after being parked for �� seconds� In
order to depart� the following operations are carried out
 The platform is connected to the
outgoing track by the exit segment� the car�s engine is engaged� the destination indicators on
the terminal destination board are turned o�� Departure then takes place� unless the track is
not clear �there is a car within ��� yards�� in which case departure is delayed�

� Passenger in terminal
 A passenger in a terminal wishes to travel to some destination terminal�
and there is no available car in the terminal traveling in the right direction� �The presence
of such a car would have been indicated by a �ashing sign on the destination board�� The
passenger pushes the destination button� and waits until a car arrives� When the destination
button is pushed� if there is an idle car in the terminal it will be assigned to that destination�
otherwise the system will send a car in from some other terminal�

� Passenger in car
 A passenger wanting to disembark pushes the appropriate button on the
car�s destination board and waits for the car to come to a halt in the destination terminal�
The system will see to it that the car stops�

Such scenarios can be described bene	cially using message sequence charts �MSC�s�� See� for
example� Fig� �� in which the events used are described later on� As mentioned� Rhapsody supports
MSC�s� which are especially good for describing collaborations� but as a re�ectivemodeling language

An MSC can be checked for consistency against the model itself� but the model�s behavior has to be
speci	ed using statecharts� as described in Section �� An additional way to use MSC�s in Rhapsody

is as an appealing �re�ective� formalism� When executing a model an MSC can be set up to show
the progress of inter�object communication�

� Object�model diagrams� Classes and their a�nities

Object�model diagrams specify classes of objects and their structural relationships� An object�
model diagram is an ER�like diagram that can be viewed as a UML object model �Ra�� It features
higraph �H�� encapsulation that denotes a strong kind of composite class aggregation� Directed edges
represent relationships� with an undirected edge abbreviating a two�way directed edge� Classes and
relationships can have associated multiplicity information of the kinds available in many object�
oriented methodologies� For consistency with UML and other notations for class structure� we also
allow a weaker kind of aggregation� represented as in �B� R�� and elsewhere by branching arrows with
a diamond�shaped icon� However� the examples in this paper do not contain weak aggregation� and
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Figure �� An MSC for the �Car approaching terminal� scenario

their semantics is indeed much weaker � essentially just that of a special association relationship�
called part�of� between the aggregate and its components�

Two comments regarding object�model diagramsare in order here� First� in this paper� we use a
rather degenerate method for presenting information about the classes in an object�model diagram�
For example� we do not show the list of methods supported by an object of a given class� The
Rhapsody tool is much more acommodating� in the spirit of the well�known methods of 	B� R�� Ra

and others� Second� we went through a lengthy period of internal deliberations as to whether we
should have separate languages for classes and instances� There are obvious advantages to having
the class model and instance model together� mainly in way of compactness and comprehension
of the representation� However� among the strong reasons not to we might note that a separate
language for concrete object instances can provide more �exibility in representing nontrivial issues
of multiplicity� object creation and reference� In fact� there is no real need for a separate notation for
instances� Instances are created during execution by realizing the multiplicities in class de�nitions
and the instantiation of composite classes speci�ed using the composite aggregation mechanism�
There are many ways to show the instances and their behavior during a run of the system� In
the modeling phase� on the other hand� instances play no role� We have thus decided to use a
single object�model language� in which classes are described together with the information needed
to create instances thereof�

Fig� 
 shows a partial object�model diagram for the rail�car system�� It shows the four main
classes� with the added information that there is a single ControlCenter and six Terminals� the
other classes lack multiplicity information� which means that they can have an unlimited number of
instances� There are four many�one bi�directional association relationships� and two uni�directional
ones� Lacking relationship names and roles� the instances refer to their �relatives� by the phrase

�Conceptually� there is a single object�model diagram for the entire system� but a modeler will typically construct

and view it in parts� Their union is to be taken as the chart for the entire system modeled�
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its� Thus� a passenger can refer to itsTerminal and a terminal will have a set of itsPassengers�
On the other hand� one of the edges has a role name� so that a Car can refer to the set of terminals
it stopsAt� which could be di�erent from the set of itsTerminals� Directionality limits referencing
ability� According to Fig� �� a terminal cannot refer to itsCars�

To enable easy referral along relationship links� we allow standard kinds of navigation expres�

sions� the full details of which will not be described here� As an example� we might want to use
the navigation expression Passenger �� itsCar �� stopsAt to refer to the set of terminals at
which the car carrying the passenger is scheduled to stop� Also� using the convention that System
always refers to an explicit composite object that encloses the entire model� the six Terminals can
be referred to from the top level of the model by System �� itsTerminal������ �We will have
more to say about this C�� syntax in the next section��

Fig� � shows the six components of the composite object Terminal� and the four components of
Car� The Entrance and Exit components are software drivers for the relevant rail segments� The
PlatformManager and ExitsManager allocate platforms and exits to the CarHandler� In contrast
with the other classes in these 	gures� the CarHandler is a concept that does not come from the
problem domain� but would probably be introduced by a domain expert during the modeling� It
handles the transactions between a Car and Terminal� As we shall see� a special CarHandler is
created whenever a car approaches a terminal� and it is destroyed when the car departs
 it thus
serves as a proxy object for the car within the terminal� The four components within Car have
no links� since they do not collaborate among themselves� The ProximitySensor� for example�
is a primitive object that sends events to the Car�s behavior �i�e�� to its statechart� based on the
distance to the approached Terminal� A composite class can refer to its components directly�

Note that we allow direct links �and hence direct communication� between a component ob�
ject and objects outside its composite parent� Note also that the relationship between Car and
CarHandler has been excluded from Fig� �� Had we wanted it to appear there too� we could have
represented it by an edge leading from Car to a stubbed end lying within the interior of Terminal�

� Instantiating classed and links

Object�model diagrams describe classes and their structure� and as such� they appear to concentrate
on static aspects only� However� when a model is executing� the system consists of concrete objects�
i�e�� instances of classes� that go through life communicating with other concrete objects along actual
links� One of the reasons that it can be very di
cult to describe the behavior of such a system
is that� unlike hardware systems� the very topology of the objects and their relationships is often
intensely dynamic�

De	ning the behavioral semantics speci	cally enough to enable model execution and full code
synthesis hinges on two main things� Initialization and dynamics over time� Initialization concerns
the way the model starts out� i�e�� which object instances are constructed at the start� and how
their attributes and relationships with other objects are initially set up� Dynamics concerns the
way the model behaves when running� and it consists of two di�erent kinds of possible changes that
can occur in the status of the model� �i� changes in the state of an object� caused by triggering
occurrences like events and calls for operations� and �ii� changes in the system�s structure� i�e�� the
instantiation and deletion of objects� and the establishment and modi	cation of links between them�
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Although statecharts are the central tool used to specify the dynamics of a model� parts of
the initialization and parts of the dynamic changes to the model�s structure depend only on the
information in the object�model diagram� as we now explain� The �rst thing to happen when a model
starts executing is the initial construction of the composite structures of the model� including the
creation of instances from classes that have a �xed integer multiplicity�� This happens recursively
down the tree of composites �that is� from a composite class to its components� repeatedly�� and
new instances are created for each instance of a composite class� Thus� referring to Figs� � and
	� one ControlCenter is created at the start� as well as six Terminals� and within each Terminal

there will be created two Entrances� two Exits� one PlatformManager� one ExitsManager and one
DestPanel� Components with unspeci�ed multiplicity will create no instances spontaneously� so
that no Cars or CarHandlers� for example� are created at the start� As we shall see later� instances
of these are created in two di
erent ways�

This feature of composite classes remains valid beyond the initialization phase� In fact� it
extends throughout the model�s dynamic behavior� Whenever an instance of a composite class is
created� the appropriate instances of the components with �xed multiplicities are created� Similarly�
destruction of the composite destroys all of its components too�

Now to association relationships� When considered from the point of view of boot�strapping the
model� these can be thought of as coming in three �avors� unambiguous� ambiguous but bounded�
and unworkable� An example of an unambiguous association is the link between Terminal and
ControlCenter in Fig� �� It is many�one� but the multiplicities on either end of the edge match
those of the associated classes� implying one possible interpretation� both in the number of actual
links and in the identity of the linked instances� Consequently� all six Terminals start out being
associated with the ControlCenter� They can refer to itsControlCenter� and it� in turn� can
refer to all of itsTerminals� if it so desires� Omitting the numeral 
 from the end of the edge
in the �gure would have resulted in an ambiguous many�one association� since any subset of the
six Terminals could be associated with the unique ControlCenter� Nevertheless� the association
would have been bounded� since it has a well�de�ned upper bound �all six are connected� and a
well�de�ned lower bound �none are connected�� Other associations� such as the ones between Car

and Terminal� are unworkable at this point� because there are simply no instances spawned on one
or more ends of the link��

Here our semantics splits into two possibilities� di
ering in the case of ambiguous but bounded
associations � greedy and nonchalant� The greedy semantics takes the most it can� and the noncha�
lant semantics takes the least it can get away with� We adopt the greedy semantics in this paper�
though a user of Rhapsody has some �exibility� The greedy approach sets things up using canonical
mappings� For example� if there are n instances in each class in a symmetric one�one relationship�
the greedy approach will associate them in matching pairs� A�i� to B�i�� for each � � i � n� If the
relationship is re�exive �i�e�� B � A�� the greedy approach matches them in cyclic order� A�i� to
A�i� ��� with A�n� �� identi�ed with A���� We have worked out necessary and su�cient condi�
tions for greedy resolution of the instantiation problem for symmetric relations� but the details are
outside the scope of this paper�

These rules for setting up relationships can also be extended to the dynamics at large� Through�

�Our languages allow also multiplicities speci�ed by integer�valued variables� and instance creation is carried out

using those variables� current values� Again� we do not get into the details of this feature here�
�This is another example of the informal nature of our exposition� since we provide here neither an exhaustive

syntax for association links nor the details of the algorithm that resolves their three�way classi�cation�
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out the run of the model� whenever objects are instantiated or destroyed� all relevant associations
should be evaluated anew and set up as above� Thus� for example� if an instance of CarHandler is
somehow created� it will have the ability to refer to itsPlatformManager and itsExitsManager�
since those links will have become unambiguous� Also� since the multiple links to Entrance

and Exit will also have become unambiguous� it should be able to refer to itsEntrance��� and
itsEntrance���� and similarly for the Exits� This dynamic re�evaluation has not yet been imple�
mented in Rhapsody�

During the ongoing behavior of the model� changes may occur in the current set of instances
and their links� These can be prescribed by several kinds of actions that can appear in the stat�
echarts� The �rst two are for maintaining instances� by� respectively� creating a new instance of
type classname �the parameters are explained later� and deleting an instance� As is our general
philosophy here� they are written in the implementation framework language� which in the present
version is C���

�object� � new �classname���parameters�	

delete �object�

Next� we have actions for adding and removing components from a composite�

�new component� � add�component name��	

remove�component name���component type�	

Finally� we have actions for maintaining association relationships� by� respectively� adding an object
to the �other	 end of a relationship and removing one from it�

�rolename� 
� add��objectname�	

�rolename� 
� remove��objectname�	

For example� the action stopsAt 
� add�term	 appears in the statechart of a Car �see Fig� 
��
with the e�ect of adding the terminal called term to the set associated with a given car by the
stopsAt relationship� this means that the car is now scheduled to stop at term too�

Before we go any further� we should comment on our nongraphical syntax� The reader will have
no doubt noticed that the actions are written in C��� This might not seem to deserve justi�cation�
given the status of C�� in the world of object�oriented programming languages� and the fact that
it is the current target language for the code synthesis of Rhapsody� However� the decision to
use C�� as our action language bears little relationship to the ideas of the paper� As a practical
matter� we had to decide on an implementation framework for the language set proposed here�
and we chose one based on C��� The decision was to write actions directly in the implementation
language� which makes it possible to plug in a framework based on another language� such as Ada�
Smalltalk or Java� or even a set�based language �as is done� e�g�� in 
CD��� This would have resulted
in di�erent�looking elements in our action language� but it would not have changed anything of
signi�cance in our modeling and analysis approach� What we could not do� however� was to keep
away from the speci�cs of the detail level completely �mainly the action language�� leaving it to the
reader� since we want our examples to be describable in detail� and we want our tool to support the
modeling process in its entirety� Therefore� once C�� was chosen for the initial implementation� it
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became natural to use C�� for the detail level of the model too� to make our action code �t the
implementation framework smoothly�

Back now to the initialization of our system� which is not yet complete� In many models�
additional information is needed to determine the full starting con�guration of the system� and
the user is expected to provide it� In our example� we have left the number and location of the
Cars unspeci�ed� We could have provided a multiplicity speci�cation in the object�model diagram�
specifying that there are� say� twelve Cars� but we would have still been left with resolving the
ambiguous links with the six Terminals� e�g�� precisely which of them is a given Car�s itsTerminal
�which is really the question of where the car is located initially�� What we do instead is to provide
the implicit top�level System object with an initialization script� which is carried out once� at the
start� In fact� each object may have an initialization script in its statechart� as we shall see later�
Here is the script for the rail�car system �again� in our C�� dialect�� it decrees the creation of twelve
new Cars� located in adjacent pairs in the six Terminals	

for �int car � �� car � �� car���

System 	
 itsCar��
i� �

new Car�System 	
 itsTerminal�i���

System 	
 itsCar��
i��� �

new Car�System 	
 itsTerminal�i��

� Events and operations

Having �nished with the initialization� we should now discuss statecharts and how they are used
to specify behavior� At the core of the behavior are the elementary mechanisms utilized in the
statecharts to e
ect object communication and collaboration� We have chosen two	 The generation
and sensing of events� and the direct invocation of operations� which trigger execution of methods�
Operations are more concrete entities than events� which implies� for example� that it makes little
sense to broadcast an operation� In contrast� events can be distributed widely� as we shall see� using
a �exible kind of broadcasting and delegation mechanism�

An object � sometimes called the client � can generate an event� and address it to some other
object� the server� The addresser must be able to refer to the addressee� and this can be done using
a legal navigation expression� or directly by name if the addressee is one of its components in a
composite or a regular aggregation� In any case� denoting such a reference generically� we write this
in our chosen framework as	

�server
 	
 gen��eventname
��parameters
��

One special server object to which a client can address an event is this� which stands for the
client object itself� In fact� the omission of a server object assumes this by default� An interesting
consequence is that expressions of the form gen��eventname
��parameters
�� that appear in an
object�s statechart are really just the standard events of 
H��� which are broadcast within� and
limited to� the present statechart itself�

Upon generation� the event gets queued on a �single� system queue� Thereafter� when the client
object reaches a stable situation �see the next section�� the system resumes its continuous process of
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applying the events from the queue to the appropriate server objects� one by one� in order� Servers
use the following simple syntax to act upon an event�

�eventname���parameters��

Actual parameters represent the data that comes with the event� and the server may use formal
parameters� as we shall see in the example later� That we are dealing here with a single�thread model
makes the dynamic semantics of this client�server setup somewhat easier to de�ne semantically�
since at most one instance will be active at any given point in time� If more than one instance can
potentially act upon an event� there is no order imposed by the semantics on which instance gets
to act �rst� Thus� the actual order is implementation dependent�

Now to the important issue of event delegation� which is relevant in the case of a server A that
happens to be a composite object� Who gets to respond to an event e addressed to A� Is it just A
itself� via its own statechart� or perhaps some or all of its component objects� One possibility for
approaching this issue is a publish�subscribe mechanism� We have opted for a somewhat di�erent
one� Our language set allows any composite class to be endowed with a simple forwarding spec that
determines the delegation strategy for the various events� We place this spec inside the top level
state of the class	s statechart
 see Fig� ��� By default� an event not appearing in A	s forwarding
spec at all will be known to A	s statechart only� The other two possibilities are for A to delegate
the event e to one or more of its components explicitly� or to delegate it to them all by broadcast�
The syntax for these in the forwarding spec is simply delegate�e�B� 
or delegate�e�B�C������
and broadcast�e�� respectively� In either case� A	s own statechart is implicitly included too� The
delegation is then continued inductively down the tree of composites� i�e�� from composite class to
its components� using the components	 own forwarding specs���

Note how this additional semantic notion with which we endow composite classes enables events
to be communicated to other objects in a wide spectrum of ways� from direct object�to�object
communication to full or limited broadcast� 
Full broadcast can be obtained by addressing the event
e to the System and including broadcast�e� in all forwarding specs� including that of the System
itself�� Our rail�car example uses default forwarding almost exclusively� meaning that events are
always sent to an explicitly�named object	s statechart� The one exception is the event clearDest�
which the Terminal delegates to its component DestPanel in Fig� ���

Events are themselves entities of the model� and can be organized in a generalization�specialization
hierarchy��� Thus� an object	s response to a general event abbreviates the fact that it responds to
any of its more specialized events�

There are many methodological justi�cations for having such an asynchronous event�based com�
munication mechanism in an object�oriented modeling method� They include the simple way it
supports client�server relationships� and the way it frees the modeler from worrying about each and
every aspect of sequencing� �Send and forget�� You send an event� the system	s queuing scheduler
takes care of passing it on to the server� and the server may deal with it at its own pace� So much
for events�

The second communication mechanism between objects involves one object directly causing

��The delegation mechanism is not implemented yet in Rhapsody�
��We avoid the almost philosophical question of whether events are really objects� We borrow from the theory of

objects concepts we need for events� e�g�� the generalization�specialization hierarchy� and leave those we don�t�� e�g��
object behavior�
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another to execute a method� by invoking one of its operations� The called object may return a
value upon completing its method� The syntax of invocation is that of C�� method activation�

�server� �� �operationname���parameters��

The expression that triggers the method in the called object is just like the one for events�

�operationname���parameters��

The semantics� however� is synchronous� The thread of control is passed immediately to the called
object� which proceeds to execute the relevant method without delay� The client�s progress is frozen
until execution of the method is completed� at which point it picks up the thread and resumes its
work� The server is deemed to have completed the method when it reaches a stable situation� or
when it returns a value by using the implementation framework�s reply�

Operations are particularly bene�cial in cases where the modeler wants close control over se�
quencing� or where tight synchronization between objects is important� But the availability of
operations is crucial in our setup for other reasons too� an important one being e�ciency� With
direct invocation of operations� the overhead of queuing is avoided� and the translation into an
object�oriented programming language is simpler and faster� In fact� as implied by the division of
modeling into various stages recommended by Cook and Daniels �CD	� events are more appropriate
in the analysis phase� whereas operations and methods are closer to design� We predict that in
real�world modeling e
orts� some of the events introduced in the early stages of the development
will be replaced by operation invocation as the process come closer to design� though events can
serve very well for design purposes too� In fact� it is interesting to observe that if we leave out
events altogether� basing the dynamics on operations and methods alone� the entire setup takes on
an almost exclusive C�� �avor� The objects are really C�� objects� their interaction mechanism is
as in C��� etc�

Now that we have seen the specially tailored nongraphical elements that our object�oriented
statecharts may use� it is time to put everything together to obtain a fully executable model�

� Statecharts for describing object behavior

The behavior of an object is speci�ed by a statechart that can be associated with its class� We say
�can�� since some objects might not need a statechart� They might delegate all their obligations to
component objects using suitable forwarding specs� or the modeler may decide that their behavior is
not speci�ed inside the model� but� rather� will be taken from a ready�made library module� or from
a reused component of some other system� or be given by explicit code� We term these primitive�
This section is about nonprimitive objects�

States 
or actually state con�gurations� since statecharts can be in multiple orthogonal state�
components at any given point in time� can be viewed as representing abstract situations in the
life�cycle of the object� or as temporary invariants of the object� An object needs a statechart for
describing modal behavior� i�e�� behavior that can be di
erent under di
erent circumstances� or in
di
erent modes�

The main methodological point we want to make here is that for such objects it is best to
utilize the full statecharts language� Some authors� like those of �CHB	� use statecharts mainly
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for specifying the pre� and post�conditions of operations in the form of abstract states� Oth�
ers discard orthogonality �concurrent states�� claiming that concurrency is already inherent in an
object�oriented system by virtue of di�erent object instances existing and operating simulaneously�
Some criticize the broadcast mechanism of statecharts� claiming that it is unrealistic for many sys�
tems� Our adoption of statecharts is lock� stock and barrel� First� the two kinds of concurrency
are quite di�erent� Orthogonality in statecharts is not necessarily for specifying components that
correspond to di�erent sub�objects� One of its main justi�cations is to enable highly compact de�
scriptions of complex speci�cation logic� �This succinctness can be exponential relative to the size of
a concurrency�free �nite state machine �DH	�� It may be used to describe complicated transactions
or scenarios with many parts� in which several requests to other objects are made simultaneously
as part of the treatment of some incoming request� and so on� Second� the statechart broadcasting
mechanism has nothing to do with inter�object communication
 it is limited to the scope of a single
statechart� in a single object instance� and is included to ease the speci�cation of complex internal
behavior� Third� orthogonality is crucial to the treatment of inheritance� since adding portions to
a speci�ed behavior in order to capture a more speci�c subtype can be done most easily by adding
orthogonal components� Some of these points can be seen on a small scale when studying the sample
statecharts given here� but they are far more evident in large models�

On a technical level� statecharts involve reactions of the form�

trigger�condition��action

all parts of which are optional� in the usual statechart manner �H��HP	� Such a reaction can adorn
a transition arrow� and can also appear within the reactions spec of a state� in which case it is
re�evaluated� and triggered whenever relevant� as long as the statechart is in the state in question�
A trigger is either an event or an operation arrival expression� as discussed above� Actions are
sequences of the event�generation expressions and operation invocations discussed above� and of
C�� statements that we do not describe in full here� Some OO purists regard every action as
a message
 we take a layered point of view� where assignments to variables are C�� statements
and not messages� Conditions are also taken from C��� and� again� this is part of the �arbitrary�
decision to use C�� on the detail level to match our implementation framework� All these elements
may use variables and expressions over data types� according to the underlying application domain�
The special internal conditions of the language of statecharts� such as in�state�� and various kinds
of timeouts and delays� such as tm�n�� are also allowed
 see �H��HP	�

The default entrance of the statechart
s top level state denotes the initialization entrance for
any newly created instance of the object� and a circled T denotes termination� with self�destruction
of the instance in question� Thus� for example� a reaction attached to the initialization entrance
arrow of a class
s statechart will serve as an initialization script for instances of that class�

As to the behavior of the statecharts themselves� since a number of semantics have been proposed
for the language we ought to make some comments� The semantics we adopt for the language here
is close to the one we de�ned for implementation in the Statemate tool �HN	� but there are a number
of di�erences that are derived from the obeject�oriented nature of the present setup� As in �HN	�
reactions to events are taken on a step�by�step basis� with the events and actions generated in one
transition not taking e�ect until the next step� after a stable situation has been reached� �A stable
situation is one in which all orthogonal components are in states� and none are left lingering along
transitions�� However� in Statemate� all triggers are constantly �attentive
� and generated events
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setDest(term)/

destSelected

new(term)/
idle

itsCarhandler=
itsTerm=term;

stopsAt->add(term)

itsTerm->assignCar(this)

[stopsAt->isEmpty()]

Car

standby

Reaction: destSelected(term) / stopsAt->add(term)

@arrival

C

@end

[mode==pass]

itsTerm=term;
alert100(term)/

cruising

@departure

@end

C
else

stopsAt->remove(itsTerm)
[mode==stop] /

tm(90)

operating

Figure �� Top�level statechart of Car

waitArrivalOK

waitDepart

waitStop

end

departAck

alertStop/

arrivAck(carHandler)/
itsCarHandler=carHandler

waitTermAck

mode=stopsAt->isin(itsTerm) ? stop:pass
/ itsTerm->gen(arrivReq(this,direction));

Cruiser->gen(disengage())

waitEnter

c

[mode==stop]

[mode==pass]/
itsCarHandler->gen(departReq(direction))

alert80

watch

alerted
Reactions:

exiting/

entering/
Cruiser->gen(disengage())

Cruiser->gen(engage())

watchAlert

arrival

Figure �� The arrival portion of Fig� �
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departure

waitExit departAck

end

itsTerm->gen(clearDest())
started

/ Cruiser->gen(engage());

syncExit

syncCruiser

waitCruise

/ Cruiser->gen(start())

/ itsCarHandler->gen(departReq(direction))

Figure �� The departure portion of Fig� �

reach their destinations instantly� implying� among other things� the need to deal with multiple
simultaneous events� This is a kind of �zero�time� assumption�

Here� in contrast� we have tried to set things up to form a more realistic� design	implementation
framework� not just an abstract modeling one��� Thus� in the current setup� events are handed
to server objects one by one from the queue� in single�event processing� Another di
erence is in
priorities� Unlike the statecharts of Statemate� when an event can trigger a number of con�icting
transitions we give priority here to lower level states�

However� the main di
erence between the way statecharts are used in a function�oriented frame�
work such as that of Statemate and in the object�oriented framework proposed in this paper� is the
role of the transitions� Here� events are treated in a run�to�completion manner �see� e�g�� 
SGW�
pp� ���������� along transitions that can be compound �i�e�� a path of adjacent arrows� and multi�
ple �i�e�� consisting of simultaneous transitions in di
erent orthogonal components�� In contrast to
Statemate�s zero�time approach to transition execution� we require that all parts of a transition be
fully executed before the statechart becomes stable and the system can respond to another event�
As far as operations go� the method executed by the called object in response to an invocation
must be provided in its entirety along such a transition� since once the statechart enters a stable
state con�guration the method terminates and the thread of control returns to the calling object�s
statechart� �Of course� the method can terminate earlier� upon execution of a reply�value� action
along the transition�� This approach to transitions is also re�ected in the fact that parameters from
events and operations are valid and available only during the execution of the �possibly compound
and multiple� transition within which the event or operation invocation was received� Once the
statechart has stabilized� these values disappear�

It is worth re�emphasizing the di
erence between events and operations in terms of the statechart
of the client object� Generating an event is something the statechart does but retains its thread
of control for the remainder of the transition it is in� running it to completion until the situation
stabilizes� In contrast� invoking another object�s operation freezes the statechart�s execution in

��This is why several additional features of Statemate have been left out of the Rhapsody framework� such

as conjunctions of events� which are harder to implement and do not seem to arise naturally when modeling with

practical design in mind�
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new(car,dir) /
itsPlatformManager->gen(allocPlatform());

itsEntrance[direction]->gen(moveTo(platform))

moveCompleted /

waitPlatform

parked

waitEnter

platformAllocated(number) /

direction=dir ;  itsCar = car;

platform =  number;

itsCar->gen(arrivAck(this))

waitComplete

waitExit

waitDepart

itsExit[direction]->gen(moveTo(platform))

departReq(dir) / direction = dir;

exitAllocated /

moveCompleted /
itsCar->gen(departAck())

T itsPlatformManager->gen(freePlatform(platform))
itsExitsManager->gen(freeExit(direction));
tm(10) /

itsExitsManager->
gen(allocExit(direction))

CarHandler

Figure �� Statechart of CarHandler

mid�transition� and the thread of control is passed to the called object to do its thing� Clearly� this
might continue� with the latter object calling others� and so on� �A cycle of calls that leads back to
the same object instance is illegal� and an attempt to execute it will abort��

� Statecharts for the rail�car example

The main statecharts for the rail�car example are given in Figs� �	
�� Figs� � and 
 are subcharts
of the statechart for Car given in Fig� �� �We could have drawn these three �gures as one� The
sub�charts in Figs� � and 
 are drawn separately just for clari�cation� and actually should be
plugged into the �arrival and �departure blobs in Fig� �� An � pre�xing a basic state denotes
the presence of a more detailed blowup statechart�� Note the T icon in Fig� �� indicating that a
CarHandler destroys itself when its task is completed� Note also that the statecharts for Terminal
and ControlCenter are modeless� containing reactions and forwarding information only�

We now walk through one of the scenarios described earlier� it helps to follow the relevant parts
in the MSC of Fig� �� The reader should be able to follow the other parts of the statecharts
in a similar way quite easily� Car has �ve main modes �see Fig� ��� and assume we are in a
situation where a particular car is in its cruising state� approaching a terminal� It leaves that
state when it receives from itsProximitySensor �whose behavior is not described here� the event
alert����term�� which alerts the car that it is 
�� yards from the terminal term� As explained
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destSelected/

Reactions:

delegate(clearDest, DestPanel)

Forwarding:

Terminal

if (itsCar->isEmpy()) // No  cars, call one
(itsControlCenter)->gen(sendCar(this))

assignCar(car) / reply = new CarHandler(car,1);
arrivReq(car,dir) / new CarHandler(care,dir);

if (car->idle()   //  Car is not assigned to  anything

Reaction:

sendCar/

car->gen(setDest(sendCar->term)) }

ControlCenter

foreach (car, itsCar)  {

Figure ��� Two modeless statecharts

above� Car does not actually receive the event� but has it handed to it from the system�s queue
manager� Nevertheless� we shall tell the story as though events are sent and received directly� The
car sets itsTerm to be the term it received as a parameter with the alert��� event� and enters its
arrival state� described in Fig� �� While the real work is carried out by the left�hand orthogonal
component therein� the right�hand component watches out the whole time to make sure the car is
more than 	� yards from the terminal� If it comes too close� it disengages its Cruiser� depicted
by the reaction carried out upon entering the alerted state� In the meantime� the car sends an
arrival request to the terminal� by generating the event arrivReq�this�direction�� providing its
own identity and the direction it is traveling� 
The direction data item is computed inside the
state standby of Car� whose internal details are also omitted here�� The car also checks whether
the terminal it is approaching is in the set of terminals it stopsAt� setting the mode to stop or
pass accordingly���

If we cut now to the modeless statechart of Terminal in Fig� ��� we see that an arrivReq event
causes a new CarHandler to be instantiated� with the car�s identity and its direction as parameters�
Cut now to the CarHandler statechart in Fig� �� It starts its life by executing its initialization
script� attached to its default entrance arrow� There it saves the two parameters in variables� and
proceeds to ask for a platform to be allocated� Having received con
rmation of that being done and
a platform number� which it saves in platform� the CarHandler asks for the entrance rail segment of
that direction to be moved to the platform in question� Once that is con
rmed� making it possible
for the car to glide neatly into the terminal� it generates the event arrivAck for the car to act
upon� with its own identity as a parameter� The car� who waited patiently in its waitEnter state�
instantiates the link to itsCarHandler� and branches o� to stop or to make a departReq to its
handler� depending on whether it is scheduled to make a stop at the terminal in question or simply
to pass through� If it has to stop� the car waits for an alertStop from itsProximitySensor� and

��Note the reaction at the bottom of the Car statechart in Fig� �� which adds a terminal to the list of scheduled

stops whenever a destination is selected� The destSelected event can be generated by the car�s DestPanel or by

the terminal�s one�
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1 6
PassengerCarMaintenanceCar

Car

Figure ��� Two kinds of cars

then leaves its arrival state �and we switch back to Fig� ��� removes the current terminal from its
list of stopsAt terminals� and enters either idle or standby� depending on whether it is scheduled
to visit any more terminals� If the car is to pass through the terminal it is approaching� it waits for
its departReq to be followed by a departAck from its handler� and proceeds �in Fig� �� to resume
cruising� Upon receiving the departReq� the CarHandler �in Fig� � again� goes through a process
dual to the one it went through to set up the car	s entrance� causing an exit rail to be connected to
the platform� It then noti
es the car that all is ready by a departAck� waits �� seconds and then
frees the exit and platform and self�destructs�

� Inheritance

Inheritance is one of the key topics in the OO paradigm� There is a large body of literature on
this topic� and much of it deals with the is�a subtyping� or subclassing� relationship between object
classes� We allow this relationship to be speci
ed in the object�model diagram in the usual way�
by the standard triangular icon on the connecting edges� Fig� �� shows part of the object�model
diagram� modi
ed so that there are now two kinds of cars that are both subclasses of the abstract
class Car�

But what exactly does it mean for an object of type B to be also an object of the more general
type A


In virtually all approaches to inheritance in the literature� the is�a relationship between classes
A and B entails a basic minimal requirement of protocol conformity� or subtyping� which roughly
means that it should be possible to �plug in	 a B wherever an A could have been used� by requiring
that B	s protocols� i�e�� what can be requested of it� are consistent with those of A� In addition�
a kind of structural conformity� or subclassing� is soften requested� to the e�ect that B	s internal
structure� such as its set of composites and aggregates� is consistent with that of A�

Nevertheless� these form a weak kind of subtyping� which says little about the behavioral confor�

mity of A and B� It requires only that the plugging in be possible without causing incompatibility�
but nothing is guaranteed about the way B will actually operate when it replaces A� Thus we don	t
have full substitutability� but merely plausibility� In fact� B	s response to an event or an opera�
tion invocation might be totally di�erent from A	s� It turns out that guaranteeing full behavioral
conformity between a type and its subtype is technically very di�cult� and much research is still
needed on this issue� Fortunately� however� behavioral conformity is too stringent in practice� Most
modelers do not expect the inheritance relationship between A and B to mean that anything A can
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@arrival

new(term)/
idle

itsCarhandler=
itsTerm=term;

itsTerm->assignCar(this)

C

@end

[mode==pass]

itsTerm=term;
alert100(term)/

cruising

Car

@departure

@end

stopsAt->add(term)
setDest(term)/

stopsAt->remove(itsTerm)
[mode==stop] /

C else

[stopsAt->isEmpty()]

Reaction: destSelected(term) / stopsAt->add(term)

operating

Figure ��� Statechart of the abstract class Car

do B can do too and in the very same way� They are satis�ed with guaranteeing that anything A
can do� B can be asked to do� and will look like it is doing� but it might very well do so di�erently
and produce di�erent results� One of the reasons for this is that� for the most part� inheritance is
introduced to enable reuse� which is really an issue of convenience and savings� We want to be able
to spend less e�ort �and to decrease the chance of error	 when respecifying things that have already
been speci�ed for a more abstract class�

Object
oriented programming languages do not deal with abstract behavior at all� and therefore
their inheritance mechanisms do not address behavioral issues� In C��� for example� a class derived
from a base class can turn the original behavior upside down� In contrast� our paper proposes a
behavior
intensive language set� which forces us to address the inheritance of behavior one way or
another� The crucial issue� of course� is in the statecharts� What should the relationship be between
A�s statechart and B�s� so that some kind of conformity results� and so that reuse is encouraged�

Authors who have addressed this question have felt that the modeler should somehow construct
B�s statechart from A�s� with some restrictions� but their recommendations di�er� For example�

CHB�� 
SGW�� and 
CD� all contain lists of such restrictions� with the recommendations of Cook
and Daniels 
CD� being particularly detailed� �
R�� p� ���� contains some remarks about this issue
too�	 It is possible to show� very easily in fact� that none of the recommended restrictions can
prevent the behavior from changing radically� which means that these proposals cannot establish
full behavioral conformity� and indeed they were not intended to�

We have essentially adopted this approach� but with code synthesis predominantly in mind�
Thus� the restrictions described below for constructing B�s statechart from that of its parent class
A were designed to be as helpful as possible when it comes to reusing parts of the code generated
from A in our C�� implementational framework� Since we do not detail the transformation scheme
here� we shall not be able to fully justify our choices in this paper�

The main guideline is to base the two statecharts on the same underlying state�transition topol
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idle

setDest(term)/
stopsAt->add(term)

manual

startManual / op

stopManual / op

startManual / op

operating

. . . .

[stopsAt->isEmpty()]

MaintenanceCar

Figure ��� Statechart of MaintenanceCar

ogy� Thus� B inherits all A�s states and transitions� and while these cannot be removed certain
re�nements are allowed� States can be modi�ed by �i	 decomposing a basic �atomic	 state into
or
substates or into orthogonal components� �ii	 adding substates to an or
state� and �iii	 adding
orthogonal components to an and
state� As to transitions� new ones can be added to B�s state

chart� and certain modi�cations are allowed in the original inherited ones� Speci�cally� the target
state of an inherited transition can be changed� even to a completely di�erent state �i�e�� not nec

essarily to a substate of the original state� as is done in �CD
	� but the source state is not to be
changed� The reasons for this are� again� implementational��� In addition� if the transition is la

beled by trigger�condition��action� then the condition can be modi�ed and the action can be
overridden� To help highlight the di�erence between structural and behavioral conformity� note
that although a transition is not allowed to be explicitly removed� it can be removed implicitly by
making its guard false�

Let us say now that we have enhanced our object
model diagrams by the two kinds of cars� as
in Fig� ��� We might then provide most of the behavior of a car in the statechart of the abstract
class Car� as in Fig� ��� The statechart of PassengerCar would inherit the states and transitions of
this �gure� and would add the standby state� which� together with some additional changes� would
lead to the original Fig� �� The statechart of MaintenanceCar would be as in Fig� ��� including
the special manual state� in which instructions to the engine are given directly by the driver� �In
Fig� �� we have left out many details� including some of those inherited from Fig� ��� such as the
inners of the operating state� Rhapsody enables the inherited elements to be displayed in more
useful ways�	

��This di�erence between source and target is somewhat less restrictive than it sounds� We can achieve the e�ect

of changing the source to a lower�level state by adding a new transition with the same target but the lower�level

state as source� Since the semantics of our statecharts give priority to the transition leading out of the lower state�

we have what we want�
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�� Discussion

A number of research topics present themselves and seem worthy of pursuit� One of the most
interesting concerns inheriting behavior� We plan to carry out a careful investigation of the various
levels of behavioral conformity possible in a setup such as ours� and to address such issues as their
feasibility� enforceability and computational complexity�

Another reaserach topic involves a detailed investigation of possible productive relationships
between statecharts and MSC�s� For example� it would be nice to be able to synthesize a �rst cut
at the statecharts for an object model from the scenarios given in the MSC�s�

A few words are in order concerning the Rhapsody tool� Although many aspects of Rhapsody
have not been addressed in this paper� including language�related ones such as active objects and
inter�object concurrency� the reader can get a pretty good feeling of its spirit by studying the
language set described here� and by contemplating the dedication to executability and analysis
present in its earlier sibling� Statemate �H��HP�� However� it is worth mentioning that Rhapsody

addresses many methodological issues too� and in ways that are quite in line with UML and the
recommendations in �B� CD� R�� SGW���� For example� the question of how to present and view
overall system behavior is very important to a modeler� even though the entire system�s behavior
is given� in principle� by the collection of statecharts for all the object classes� Much has been said
and written about this and other such topics� and Rhapsody provides several additional features to
ease the work of modelers and system analysts� such as message sequence charts�

As far as code synthesis goes� we feel that we are on the right track� It is our hope that the
code generated by Rhapsody will turn out to be useful in bringing high�level modeling closer to the
desired �nal product�

Acknowledgements� We wish to thank Michal Politi and Alex Nerst� but especially Michael
Hirsch� for numerous helpful discussions and ideas�
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