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Abstract: A behaviorally expressive set of diagrammatic languages for modeling object-oriented sys-
tems is presented. It constitutes the constructive subset of UML, and is supported by RHaPsoDY, a tool
that enables model execution and full code synthesis.

1 Introduction

This paper reports on an effort to develop an integrated set of diagrammatic languages for modeling
object-oriented systems, and to construct a supporting tool. We want our models to be intuitive
and well-structured, but also behaviorally expressive and rigorous. The goal is to support full
executability and dynamic analysis, as well as automatic synthesis of usable and efficient code in
object-oriented languages such as CtT. At the heart of the modeling method is the language of
statecharts [H1] for specifying object behavior, and a structured object-model language for describ-
ing classes, and their structure and inter-relationships. Objects can interact by event generation or
direct invocation of operations.

Our approach is consistent with the recent UML effort [Ra]. First, statecharts have been adopted
in UML and in its main precursers (the Booch method [B] and OMT [R*]) as the main medium
for specifying behavior. Second, we have participated quite extensively in the UML definition effort
(led by the group from Rational Corp.), in order to ensure that UML will be fully consistent with
our work. In fact, our language set can be viewed as a “UML core”, constituting the constructive
portion of UML, but coming complete with a fully worked out behavioral semantics and a powerful
supporting tool.

In the interest of keeping the exposition in the paper manageable, we leave out some technically
involved topics, such as multiple-thread concurrency and active objects, which will be described else-
where. The supporting tool, Ruapsopy, which is available from i-Logix, Inc., will also be described
in detail separately.

*The Weizmann Institute of Science, Rehovot, Israel. Email: harel@wisdom.weizmann.ac.il. Research sup-
ported in part by a basic research grant from the Israel Academy of Sciences.
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2 Background and overview

Statecharts were conceived of by the first-listed author in 1983. In the (belatedly published) paper
that first presented them [H1], statecharts were portrayed in isolation, as a visual formalism for
specifying ‘raw’ reactive behavior. Adopting statecharts as the behavioral component of a general
system-modeling approach is quite a different matter, since the links between the various aspects
of a system’s description can be subtle and slippery. Modeling approaches ought to be detailed
and precise enough to enable model execution, dynamic analysis and code synthesis. For this, the
language set must be rigorously defined and ‘closed up’: Any possible combination of graphical
and/or textual constructs must be clearly characterized as syntactically legal or illegal, and all legal
combinations must then be given unique and formal meaning.

Over a decade ago, a full language set was built around statecharts, based on the function-
oriented structured-analysis paradigm (SA); see [HT, HP]. Statecharts, used for behavioral descrip-
tion, were closely integrated with a structured language for functional decomposition and data-flow,
called activity-charts.? Since SA methods are widely regarded as suffering from a discontinuity
problem in transition to design and reuse, many people recommend complementing function-based
approaches with ones that follow the object-oriented (OO) paradigm. This change is one of the
most significant in software engineering in recent years. Accordingly, we embarked on an effort
to develop a set of languages for object modeling, built around statecharts, and to construct a
supporting tool with full executability and code synthesis capabilities.

The basic idea is to model the structural properties of classes in a clear hierarchical manner,
and to integrate the resulting description with a precise specification of behavior over time, using
statecharts. Since classes represent dynamically changing collections of concrete objects (instances),
and since the structure itself is dynamically changing, the model must address issues like the ini-
tialization of, and the reference to, real object instances, the delegation of messages, the creation
and destruction of instances, the initialization, modification and maintenance of links representing
association relationships, etc. We must also address aggregation and inheritance from a behav-
ioral point of view. All this makes the problem of combining structure and behavior much harder
than in an SA-based framework. And it is particularly delicate in the realm of highly reactive
systems, which are characterized not by data-intensive computation but by control-intensive, often
time-critical, behavior.

The object paradigm started in the programming languages community, but was later adopted
on an abstract level too, in the form of methodologies that are more appropriate for system mod-
eling; see, for example [B, CD, R*, SGW, SM]. Most object-oriented modeling methodologies offer
graphical notations for specifying the model. They typically have ER-style diagrams for specifying
classes of objects and their inter-relationships, and means for describing the interface and capabili-
ties of the objects themselves. A state-based formalism is usually adopted for specifying behavior,
and all of the methodologies listed above recommend statecharts (or some sublanguage thereof) for
this. However, in many cases such methodologies do not address dynamic semantics adequately, so
that the precise behavior of models over time is not always well-defined. One major motivation for
our work was to eliminate this crucial shortcoming.

2A third language, module-charts, was used to specify physical decomposition. See [H3] for the motivation and
‘philosophical” aspects of this effort, and [HP] for a full description of the languages. This language set underlies the
STATEMATE tool [H*], built to enable executability, analysis and code-generation.



Our approach involves two constructive modeling languages, object-model diagrams and state-
charts, and a reflective language, message sequence charts (MSC
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Figure 1: The rail-car system
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3 The rail-car example

We illustrate the approach using an automated rail-car system example (see Fig. 1).° Six terminals
are located on a cyclic path, and each pair of adjacent ones is connected by two rail tracks, one
for clockwise travel and the other for counter-clockwise. Several rail-cars are available to transport
passengers between terminals. There is a control center that receives, processes and sends system
data to the various components.

Each terminal has a parking area containing four parallel platforms, each of which can park a
single car (see Fig. 2). The four rail tracks that are incident with a terminal, two incoming and two
outgoing, are each connected to a rail segment that can be adjusted to link to any one of the four
platforms. The terminal has a destination board for passenger use, containing a pushbutton and
indicator for each destination terminal. Each car is equipped with an engine and a cruise-controller
for maintaining speed. The cruiser can be off, engaged or disengaged. The car is to maintain the
maximal speed that will guarantee that it will never be within 80 yards of any other car. A stopped
car will continue its travel only if the smallest distance to any other car is at least 120 yards.
A car also has its own destination board, similar to the one in the terminal. The control center

6The example was inspired by the specification appearing in a 1990 manuscript by Vered Gafni, titled “Automatic
Transportation System”.



communicates with the various system components, receiving processing and providing system data.

Here are some typical scenarios of the system (sometimes called ‘use cases’ [J]). The first two
depict interactions between a car and a terminal, and the last two between a passenger and the
system:

o Car approaching terminal: When it reaches 100 yards from the terminal, the car will be
allocated a platform and entrance segment connecting it to the incoming track. If the car is
to pass through without stopping, it is allocated an exit segment too. If the allocation is not
completed within 80 yards from the terminal, the car is stopped and delayed until all is ready.

o Car departing terminal: A car will depart the terminal after being parked for 90 seconds. In
order to depart, the following operations are carried out: The platform is connected to the
outgoing track by the exit segment; the car’s engine is engaged; the destination indicators on
the terminal destination board are turned off. Departure then takes place, unless the track is
not clear (there is a car within 100 yards), in which case departure is delayed.

o Passenger in terminal: A passenger in a terminal wishes to travel to some destination terminal,
and there is no available car in the terminal traveling in the right direction. (The presence
of such a car would have been indicated by a flashing sign on the destination board.) The
passenger pushes the destination button, and waits until a car arrives. When the destination
button is pushed, if there is an idle car in the terminal it will be assigned to that destination,
otherwise the system will send a car in from some other terminal.

o Passenger in car: A passenger wanting to disembark pushes the appropriate button on the
car’s destination board and waits for the car to come to a halt in the destination terminal.
The system will see to it that the car stops.

Such scenarios can be described beneficially using message sequence charts (MSC’s). See, for
example, Fig. 3, in which the events used are described later on. As mentioned, Ruarsopy supports
MSC’s, which are especially good for describing collaborations, but as a reflective modeling language:
An MSC can be checked for consistency against the model itself, but the model’s behavior has to be
specified using statecharts, as described in Section 7. An additional way to use MSC’s in Ruapsopy
is as an appealing “reflective” formalism. When executing a model an MSC can be set up to show
the progress of inter-object communication.

4 Object-model diagrams: Classes and their affinities

Object-model diagrams specify classes of objects and their structural relationships. An object-
model diagram is an ER-like diagram that can be viewed as a UML object model [Ra]. It features
higraph [H2] encapsulation that denotes a strong kind of composite class aggregation. Directed edges
represent relationships, with an undirected edge abbreviating a two-way directed edge. Classes and
relationships can have associated multiplicity information of the kinds available in many object-
oriented methodologies. For consistency with UML and other notations for class structure, we also
allow a weaker kind of aggregation, represented as in [B, R*] and elsewhere by branching arrows with
a diamond-shaped icon. However, the examples in this paper do not contain weak aggregation, and
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Figure 3: An MSC for the “Car approaching terminal” scenario

their semantics is indeed much weaker — essentially just that of a special association relationship,
called part-of, between the aggregate and its components.

Two comments regarding object-model diagramsare in order here. First, in this paper, we use a
rather degenerate method for presenting information about the classes in an object-model diagram.
For example, we do not show the list of methods supported by an object of a given class. The
RuAPsoDY tool is much more acommodating, in the spirit of the well-known methods of [B, R*, Ra]
and others. Second, we went through a lengthy period of internal deliberations as to whether we
should have separate languages for classes and instances. There are obvious advantages to having
the class model and instance model together, mainly in way of compactness and comprehension
of the representation. However, among the strong reasons not to we might note that a separate
language for concrete object instances can provide more flexibility in representing nontrivial issues
of multiplicity, object creation and reference. In fact, there is no real need for a separate notation for
instances: Instances are created during execution by realizing the multiplicities in class definitions
and the instantiation of composite classes specified using the composite aggregation mechanism.
There are many ways to show the instances and their behavior during a run of the system. In
the modeling phase, on the other hand, instances play no role. We have thus decided to use a
single object-model language, in which classes are described together with the information needed
to create instances thereof.

Fig. 4 shows a partial object-model diagram for the rail-car system.” It shows the four main
classes, with the added information that there is a single ControlCenter and six Terminals; the
other classes lack multiplicity information, which means that they can have an unlimited number of
instances. There are four many-one bi-directional association relationships, and two uni-directional
ones. Lacking relationship names and roles, the instances refer to their ‘relatives’ by the phrase

"Conceptually, there is a single object-model diagram for the entire system, but a modeler will typically construct
and view it in parts. Their union is to be taken as the chart for the entire system modeled.
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its. Thus, a passenger can refer to itsTerminal and a terminal will have a set of itsPassengers.
On the other hand, one of the edges has a role name, so that a Car can refer to the set of terminals
it stopsAt, which could be different from the set of itsTerminals. Directionality limits referencing
ability: According to Fig. 4, a terminal cannot refer to itsCars.

To enable easy referral along relationship links, we allow standard kinds of navigation expres-
stons, the full details of which will not be described here. As an example, we might want to use
the navigation expression Passenger -> itsCar -> stopsAt to refer to the set of terminals at
which the car carrying the passenger is scheduled to stop. Also, using the convention that System
always refers to an explicit composite object that encloses the entire model, the six Terminals can
be referred to from the top level of the model by System -> itsTerminall[1:6]. (We will have
more to say about this C** syntax in the next section.)

Fig. 5 shows the six components of the composite object Terminal, and the four components of
Car. The Entrance and Exit components are software drivers for the relevant rail segments. The
PlatformManager and ExitsManager allocate platforms and exits to the CarHandler. In contrast
with the other classes in these figures, the CarHandler is a concept that does not come from the
problem domain, but would probably be introduced by a domain expert during the modeling. It
handles the transactions between a Car and Terminal. As we shall see, a special CarHandler is
created whenever a car approaches a terminal, and it is destroyed when the car departs; it thus
serves as a proxy object for the car within the terminal. The four components within Car have
no links, since they do not collaborate among themselves. The ProximitySensor, for example,
is a primitive object that sends events to the Car’s behavior (i.e., to its statechart) based on the
distance to the approached Terminal. A composite class can refer to its components directly.

Note that we allow direct links (and hence direct communication) between a component ob-
ject and objects outside its composite parent. Note also that the relationship between Car and
CarHandler has been excluded from Fig. 4. Had we wanted it to appear there too, we could have
represented it by an edge leading from Car to a stubbed end lying within the interior of Terminal.

5 Instantiating classed and links

Object-model diagrams describe classes and their structure, and as such, they appear to concentrate
on static aspects only. However, when a model is executing, the system consists of concrete objects,
i.e., instances of classes, that go through life communicating with other concrete objects along actual
links. One of the reasons that it can be very difficult to describe the behavior of such a system
is that, unlike hardware systems, the very topology of the objects and their relationships is often
intensely dynamic.

Defining the behavioral semantics specifically enough to enable model execution and full code
synthesis hinges on two main things: Initialization and dynamics over time. Initialization concerns
the way the model starts out, i.e., which object instances are constructed at the start, and how
their attributes and relationships with other objects are initially set up. Dynamics concerns the
way the model behaves when running, and it consists of two different kinds of possible changes that
can occur in the status of the model: (i) changes in the state of an object, caused by triggering
occurrences like events and calls for operations, and (ii) changes in the system’s structure, i.e., the
instantiation and deletion of objects, and the establishment and modification of links between them.



Although statecharts are the central tool used to specify the dynamics of a model, parts of
the initialization and parts of the dynamic changes to the model’s structure depend only on the
information in the object-model diagram, as we now explain. The first thing to happen when a model
starts executing is the initial construction of the composite structures of the model, including the
creation of instances from classes that have a fixed integer multiplicity.® This happens recursively
down the tree of composites (that is, from a composite class to its components, repeatedly), and
new instances are created for each instance of a composite class. Thus, referring to Figs. 4 and
5, one ControlCenter is created at the start, as well as six Terminals, and within each Terminal
there will be created two Entrances, two Exits, one PlatformManager, one ExitsManager and one
DestPanel. Components with unspecified multiplicity will create no instances spontaneously, so
that no Cars or CarHandlers, for example, are created at the start. As we shall see later, instances
of these are created in two different ways.

This feature of composite classes remains valid beyond the initialization phase. In fact, it
extends throughout the model’s dynamic behavior: Whenever an instance of a composite class is
created, the appropriate instances of the components with fixed multiplicities are created. Similarly,
destruction of the composite destroys all of its components too.

Now to association relationships. When considered from the point of view of boot-strapping the
model, these can be thought of as coming in three flavors: unambiguous, ambiguous but bounded,
and unworkable. An example of an unambiguous association is the link between Terminal and
ControlCenter in Fig. 4. It is many-one, but the multiplicities on either end of the edge match
those of the associated classes, implying one possible interpretation, both in the number of actual
links and in the identity of the linked instances. Consequently, all six Terminals start out being
associated with the ControlCenter: They can refer to itsControlCenter, and it, in turn, can
refer to all of itsTerminals, if it so desires. Omitting the numeral 6 from the end of the edge
in the figure would have resulted in an ambiguous many-one association, since any subset of the
six Terminals could be associated with the unique ControlCenter. Nevertheless, the association
would have been bounded, since it has a well-defined upper bound (all six are connected) and a
well-defined lower bound (none are connected). Other associations, such as the ones between Car
and Terminal, are unworkable at this point, because there are simply no instances spawned on one
or more ends of the link.?

Here our semantics splits into two possibilities, differing in the case of ambiguous but bounded
associations — greedy and nonchalant. The greedy semantics takes the most it can, and the noncha-
lant semantics takes the least it can get away with. We adopt the greedy semantics in this paper,
though a user of Ruaprsopy has some flexibility. The greedy approach sets things up using canonical
mappings. For example, if there are n instances in each class in a symmetric one-one relationship,
the greedy approach will associate them in matching pairs, A(¢) to B(¢), for each 1 <¢ < n. If the
relationship is reflexive (i.e., B = A), the greedy approach matches them in cyclic order, A(7) to
A(i 4 1), with A(n + 1) identified with A(1). We have worked out necessary and sufficient condi-
tions for greedy resolution of the instantiation problem for symmetric relations, but the details are
outside the scope of this paper.

These rules for setting up relationships can also be extended to the dynamics at large: Through-

8Qur languages allow also multiplicities specified by integer-valued variables, and instance creation is carried out
using those variables’ current values. Again, we do not get into the details of this feature here.

9This is another example of the informal nature of our exposition, since we provide here neither an exhaustive
syntax for association links nor the details of the algorithm that resolves their three-way classification.



out the run of the model, whenever objects are instantiated or destroyed, all relevant associations
should be evaluated anew and set up as above. Thus, for example, if an instance of CarHandler is
somehow created, it will have the ability to refer to itsPlatformManager and itsExitsManager,
since those links will have become unambiguous. Also, since the multiple links to Entrance
and Exit will also have become unambiguous, it should be able to refer to itsEntrance[1] and
itsEntrance[2], and similarly for the Exits. This dynamic re-evaluation has not yet been imple-
mented in REAPSODY.

During the ongoing behavior of the model, changes may occur in the current set of instances
and their links. These can be prescribed by several kinds of actions that can appear in the stat-
echarts. The first two are for maintaining instances, by, respectively, creating a new instance of
type classname (the parameters are explained later) and deleting an instance. As is our general
philosophy here, they are written in the implementation framework language, which in the present
version is Ct7:

<object> = new <classname>(<parameters>)
delete <object>

Next, we have actions for adding and removing components from a composite:

<new component> = add<component name>()
remove<component name>(<component type>)

Finally, we have actions for maintaining association relationships, by, respectively, adding an object
to the ‘other’ end of a relationship and removing one from it:

<rolename> -> add(<objectname>)
<rolename> -> remove(<objectname>)

For example, the action stopsAt -> add(term) appears in the statechart of a Car (see Fig. 6),
with the effect of adding the terminal called term to the set associated with a given car by the
stopsAt relationship; this means that the car is now scheduled to stop at term too.

Before we go any further, we should comment on our nongraphical syntax. The reader will have
no doubt noticed that the actions are written in CT*. This might not seem to deserve justification,
given the status of C** in the world of object-oriented programming languages, and the fact that
it is the current target language for the code synthesis of Ruapsony. However, the decision to
use CTT as our action language bears little relationship to the ideas of the paper. As a practical
matter, we had to decide on an implementation framework for the language set proposed here,
and we chose one based on CT*. The decision was to write actions directly in the implementation
language, which makes it possible to plug in a framework based on another language, such as Ada,
Smalltalk or Java, or even a set-based language (as is done, e.g., in [CD]). This would have resulted
in different-looking elements in our action language, but it would not have changed anything of
significance in our modeling and analysis approach. What we could not do, however, was to keep
away from the specifics of the detail level completely (mainly the action language), leaving it to the
reader, since we want our examples to be describable in detail, and we want our tool to support the
modeling process in its entirety. Therefore, once C** was chosen for the initial implementation, it
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became natural to use C** for the detail level of the model too, to make our action code fit the
implementation framework smoothly.

Back now to the initialization of our system, which is not yet complete. In many models,
additional information is needed to determine the full starting configuration of the system, and
the user is expected to provide it. In our example, we have left the number and location of the
Cars unspecified. We could have provided a multiplicity specification in the object-model diagram,
specifying that there are, say, twelve Cars, but we would have still been left with resolving the
ambiguous links with the six Terminals; e.g., precisely which of them is a given Car’s itsTerminal
(which is really the question of where the car is located initially). What we do instead is to provide
the implicit top-level System object with an initialization script, which is carried out once, at the
start. In fact, each object may have an initialization script in its statechart, as we shall see later.
Here is the script for the rail-car system (again, in our C*t* dialect); it decrees the creation of twelve
new Cars, located in adjacent pairs in the six Terminals:

for (int car = 0; car < 7; car++)
System -> itsCar[2x*i] =
new Car(System -> itsTerminallil);
System -> itsCar[2x*i+1] =
new Car(System -> itsTerminall[i])

6 Events and operations

Having finished with the initialization, we should now discuss statecharts and how they are used
to specify behavior. At the core of the behavior are the elementary mechanisms utilized in the
statecharts to effect object communication and collaboration. We have chosen two: The generation
and sensing of events, and the direct invocation of operations, which trigger execution of methods.
Operations are more concrete entities than events, which implies, for example, that it makes little
sense to broadcast an operation. In contrast, events can be distributed widely, as we shall see, using
a flexible kind of broadcasting and delegation mechanism.

An object — sometimes called the client — can generate an event, and address it to some other
object, the server. The addresser must be able to refer to the addressee, and this can be done using
a legal navigation expression, or directly by name if the addressee is one of its components in a
composite or a regular aggregation. In any case, denoting such a reference generically, we write this
in our chosen framework as:

<server> -> gen(<eventname>(<parameters>))

One special server object to which a client can address an event is this, which stands for the
client object itself. In fact, the omission of a server object assumes this by default. An interesting
consequence is that expressions of the form gen(<eventname> (<parameters>)) that appear in an
object’s statechart are really just the standard events of [H1], which are broadcast within, and
limited to, the present statechart itself.

Upon generation, the event gets queued on a (single) system queue. Thereafter, when the client
object reaches a stable situation (see the next section), the system resumes its continuous process of

11



applying the events from the queue to the appropriate server objects, one by one, in order. Servers
use the following simple syntax to act upon an event:

<eventname> (<parameters>)

Actual parameters represent the data that comes with the event, and the server may use formal
parameters, as we shall see in the example later. That we are dealing here with a single-thread model
makes the dynamic semantics of this client/server setup somewhat easier to define semantically,
since at most one instance will be active at any given point in time. If more than one instance can
potentially act upon an event, there is no order imposed by the semantics on which instance gets
to act first. Thus, the actual order is implementation dependent.

Now to the important issue of event delegation, which is relevant in the case of a server A that
happens to be a composite object. Who gets to respond to an event e addressed to A7 Is it just A
itself, via its own statechart, or perhaps some or all of its component objects? One possibility for
approaching this issue is a publish/subscribe mechanism. We have opted for a somewhat different
one. Our language set allows any composite class to be endowed with a simple forwarding spec that
determines the delegation strategy for the various events. We place this spec inside the top level
state of the class’s statechart; see Fig. 10. By default, an event not appearing in A’s forwarding
spec at all will be known to A’s statechart only. The other two possibilities are for A to delegate
the event e to one or more of its components explicitly, or to delegate it to them all by broadcast.
The syntax for these in the forwarding spec is simply delegate(e,B) (or delegate(e,B,C,...))
and broadcast(e), respectively. In either case, A’s own statechart is implicitly included too. The
delegation is then continued inductively down the tree of composites, i.e., from composite class to

its components, using the components’ own forwarding specs.'’

Note how this additional semantic notion with which we endow composite classes enables events
to be communicated to other objects in a wide spectrum of ways, from direct object-to-object
communication to full or limited broadcast. (Full broadcast can be obtained by addressing the event
e to the System and including broadcast(e) in all forwarding specs, including that of the System
itself.) Our rail-car example uses default forwarding almost exclusively, meaning that events are
always sent to an explicitly-named object’s statechart. The one exception is the event clearDest,
which the Terminal delegates to its component DestPanel in Fig. 10.

Events are themselves entities of the model, and can be organized in a generalization /specialization
hierarchy.'' Thus, an object’s response to a general event abbreviates the fact that it responds to
any of its more specialized events.

There are many methodological justifications for having such an asynchronous event-based com-
munication mechanism in an object-oriented modeling method. They include the simple way it
supports client/server relationships, and the way it frees the modeler from worrying about each and
every aspect of sequencing. “Send and forget”: You send an event, the system’s queuing scheduler
takes care of passing it on to the server, and the server may deal with it at its own pace. So much
for events.

The second communication mechanism between objects involves one object directly causing

10The delegation mechanism is not implemented yet in RHAPSODY.

11'We avoid the almost philosophical question of whether events are really objects. We borrow from the theory of
objects concepts we need for events, e.g., the generalization/specialization hierarchy, and leave those we don’t,. e.g.,
object behavior.
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another to execute a method, by invoking one of its operations. The called object may return a
value upon completing its method. The syntax of invocation is that of C** method activation:

<server> -> <operationname>(<parameters>)
The expression that triggers the method in the called object is just like the one for events:
<operationname>(<parameters>)

The semantics, however, is synchronous. The thread of control is passed immediately to the called
object, which proceeds to execute the relevant method without delay. The client’s progress is frozen
until execution of the method is completed, at which point it picks up the thread and resumes its
work. The server is deemed to have completed the method when it reaches a stable situation, or
when it returns a value by using the implementation framework’s reply.

Operations are particularly beneficial in cases where the modeler wants close control over se-
quencing, or where tight synchronization between objects is important. But the availability of
operations is crucial in our setup for other reasons too, an important one being efficiency. With
direct invocation of operations, the overhead of queuing is avoided, and the translation into an
object-oriented programming language is simpler and faster. In fact, as implied by the division of
modeling into various stages recommended by Cook and Daniels [CD], events are more appropriate
in the analysis phase, whereas operations and methods are closer to design. We predict that in
real-world modeling efforts, some of the events introduced in the early stages of the development
will be replaced by operation invocation as the process come closer to design, though events can
serve very well for design purposes too. In fact, it is interesting to observe that if we leave out
events altogether, basing the dynamics on operations and methods alone, the entire setup takes on
an almost exclusive C** flavor: The objects are really C*t* objects, their interaction mechanism is
as in CtT etc.

Now that we have seen the specially tailored nongraphical elements that our object-oriented
statecharts may use, it is time to put everything together to obtain a fully executable model.

7 Statecharts for describing object behavior

The behavior of an object is specified by a statechart that can be associated with its class. We say
‘can’, since some objects might not need a statechart. They might delegate all their obligations to
component objects using suitable forwarding specs, or the modeler may decide that their behavior is
not specified inside the model, but, rather, will be taken from a ready-made library module, or from
a reused component of some other system, or be given by explicit code. We term these primitive.
This section is about nonprimitive objects.

States (or actually state configurations, since statecharts can be in multiple orthogonal state-
components at any given point in time) can be viewed as representing abstract situations in the
life-cycle of the object, or as temporary invariants of the object. An object needs a statechart for
describing modal behavior, i.e., behavior that can be different under different circumstances, or in
different modes.

The main methodological point we want to make here is that for such objects it is best to
utilize the full statecharts language. Some authors, like those of [CHB], use statecharts mainly
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for specifying the pre- and post-conditions of operations in the form of abstract states. Oth-
ers discard orthogonality (concurrent states), claiming that concurrency is already inherent in an
object-oriented system by virtue of different object instances existing and operating simulaneously.
Some criticize the broadcast mechanism of statecharts, claiming that it is unrealistic for many sys-
tems. Our adoption of statecharts is lock, stock and barrel. First, the two kinds of concurrency
are quite different. Orthogonality in statecharts is not necessarily for specifying components that
correspond to different sub-objects. One of its main justifications is to enable highly compact de-
scriptions of complex specification logic. (This succinctness can be exponential relative to the size of
a concurrency-free finite state machine [DH].) It may be used to describe complicated transactions
or scenarios with many parts, in which several requests to other objects are made simultaneously
as part of the treatment of some incoming request, and so on. Second, the statechart broadcasting
mechanism has nothing to do with inter-object communication; it is limited to the scope of a single
statechart, in a single object instance, and is included to ease the specification of complex internal
behavior. Third, orthogonality is crucial to the treatment of inheritance, since adding portions to
a specified behavior in order to capture a more specific subtype can be done most easily by adding
orthogonal components. Some of these points can be seen on a small scale when studying the sample
statecharts given here, but they are far more evident in large models.

On a technical level, statecharts involve reactions of the form:
trigger[condition]/action

all parts of which are optional, in the usual statechart manner [H1,HP]. Such a reaction can adorn
a transition arrow, and can also appear within the reactions spec of a state, in which case it is
re-evaluated, and triggered whenever relevant, as long as the statechart is in the state in question.
A trigger is either an event or an operation arrival expression, as discussed above. Actions are
sequences of the event-generation expressions and operation invocations discussed above, and of
C*t statements that we do not describe in full here. Some OO purists regard every action as
a message; we take a layered point of view, where assignments to variables are C** statements
and not messages. Conditions are also taken from C**, and, again, this is part of the (arbitrary)
decision to use C™* on the detail level to match our implementation framework. All these elements
may use variables and expressions over data types, according to the underlying application domain.
The special internal conditions of the language of statecharts, such as in(state), and various kinds
of timeouts and delays, such as tm(n), are also allowed; see [H1,HP].

The default entrance of the statechart’s top level state denotes the initialization entrance for
any newly created instance of the object, and a circled T denotes termination, with self-destruction
of the instance in question. Thus, for example, a reaction attached to the initialization entrance
arrow of a class’s statechart will serve as an initialization script for instances of that class.

As to the behavior of the statecharts themselves, since a number of semantics have been proposed
for the language we ought to make some comments. The semantics we adopt for the language here
is close to the one we defined for implementation in the Statemate tool [HN], but there are a number
of differences that are derived from the obeject-oriented nature of the present setup. As in [HN],
reactions to events are taken on a step-by-step basis, with the events and actions generated in one
transition not taking effect until the next step, after a stable situation has been reached. (A stable
situation is one in which all orthogonal components are in states, and none are left lingering along
transitions.) However, in Statemate, all triggers are constantly ‘attentive’, and generated events
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setDest(term)/
) new(term)/ ¥ stopsAt->add(term)
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stopsAt->remove(itsTerm)
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Reaction:  destSelected(term) / stopsAt->add(term)

Figure 6: Top-level statechart of Car
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|
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alertStop/
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Figure 7: The arrival portion of Fig. 6
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departure

% / itsCarHandler->gen(departReq(direction)) J

/ Cruiser->gen(start()) / Cruiser->gen(engage();

- - itsTerm->gen(clearDest())
Fo) e

Figure 8: The departure portion of Fig. 6

reach their destinations instantly, implying, among other things, the need to deal with multiple
simultaneous events. This is a kind of ‘zero-time’ assumption.

Here, in contrast, we have tried to set things up to form a more realistic, design /implementation
framework, not just an abstract modeling one.'> Thus, in the current setup, events are handed
to server objects one by one from the queue, in single-event processing. Another difference is in
priorities: Unlike the statecharts of Staremare, when an event can trigger a number of conflicting
transitions we give priority here to lower level states.

However, the main difference between the way statecharts are used in a function-oriented frame-
work such as that of Statemare and in the object-oriented framework proposed in this paper, is the
role of the transitions. Here, events are treated in a run-to-completion manner (see, e.g., [SGW,
pp. 218-219]), along transitions that can be compound (i.e., a path of adjacent arrows) and multi-
ple (i.e., consisting of simultaneous transitions in different orthogonal components). In contrast to
STATEMATE’S zero-time approach to transition execution, we require that all parts of a transition be
fully executed before the statechart becomes stable and the system can respond to another event.
As far as operations go, the method executed by the called object in response to an invocation
must be provided in its entirety along such a transition, since once the statechart enters a stable
state configuration the method terminates and the thread of control returns to the calling object’s
statechart. (Of course, the method can terminate earlier, upon execution of a reply(value) action
along the transition.) This approach to transitions is also reflected in the fact that parameters from
events and operations are valid and available only during the execution of the (possibly compound
and multiple) transition within which the event or operation invocation was received. Once the
statechart has stabilized, these values disappear.

It is worth re-emphasizing the difference between events and operations in terms of the statechart
of the client object. Generating an event is something the statechart does but retains its thread
of control for the remainder of the transition it is in, running it to completion until the situation
stabilizes. In contrast, invoking another object’s operation freezes the statechart’s execution in

12This is why several additional features of STATEMATE have been left out of the RHAPSODY framework, such
as conjunctions of events, which are harder to implement and do not seem to arise naturally when modeling with
practical design in mind.
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new(car,dir) / direction=dir ; itsCar = car;
.\itsPlatformM anager->gen(allocPlatform());
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itsEntrance] direction]->gen(moveT o(platform))
waitEnter
moveCompleted / itsCar->gen(arrivAck(this))

departReq(dir) / direction = dir;

itsExitsManager->
gen(allocExit(direction))
exitAllocated /
. itsExit[direction]->gen(moveTo(platform
waitComplete [ 1->gen( (P )
moveCompleted /
waitDepart

itsCar->gen(departAck())
tm(10) /

itsExitsM anager->gen(freeExit(direction));
itsPlatformM anager->gen(freePlatform(platform))

Figure 9: Statechart of CarHandler

mid-transition, and the thread of control is passed to the called object to do its thing. Clearly, this
might continue, with the latter object calling others, and so on. (A cycle of calls that leads back to
the same object instance is illegal, and an attempt to execute it will abort.)

8 Statecharts for the rail-car example

The main statecharts for the rail-car example are given in Figs. 6-10. Figs. 7 and 8 are subcharts
of the statechart for Car given in Fig. 6. (We could have drawn these three figures as one. The
sub-charts in Figs. 7 and 8 are drawn separately just for clarification, and actually should be
plugged into the @arrival and @departure blobs in Fig. 6. An @ prefixing a basic state denotes
the presence of a more detailed blowup statechart.) Note the T icon in Fig. 9, indicating that a
CarHandler destroys itself when its task is completed. Note also that the statecharts for Terminal
and ControlCenter are modeless, containing reactions and forwarding information only.

We now walk through one of the scenarios described earlier; it helps to follow the relevant parts
in the MSC of Fig. 3. The reader should be able to follow the other parts of the statecharts
in a similar way quite easily. Car has five main modes (see Fig. 6), and assume we are in a
situation where a particular car is in its cruising state, approaching a terminal. It leaves that
state when it receives from itsProximitySensor (whose behavior is not described here) the event
alert100(term), which alerts the car that it is 100 yards from the terminal term. As explained
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Terminal

Reactions:
arrivReg(car,dir) / new CarHandler(care,dir);
assignCar(car) / reply = new CarHandler(car,1);
destSel ected/
if (itsCar->isEmpy()) // No cars, cal one
(itsControl Center)->gen(sendCar(this))

Forwarding:
delegate(clearDest, DestPanel)

Control Center
Reaction:

sendCar/
foreach (car, itsCar) {
if (car->idle() // Carisnot assignedto anything
car->gen(setDest(sendCar->term)) }

Figure 10: Two modeless statecharts

above, Car does not actually receive the event, but has it handed to it from the system’s queue
manager. Nevertheless, we shall tell the story as though events are sent and received directly. The
car sets itsTerm to be the term it received as a parameter with the alert100 event, and enters its
arrival state, described in Fig. 6. While the real work is carried out by the left-hand orthogonal
component therein, the right-hand component watches out the whole time to make sure the car is
more than 80 yards from the terminal. If it comes too close, it disengages its Cruiser, depicted
by the reaction carried out upon entering the alerted state. In the meantime, the car sends an
arrival request to the terminal, by generating the event arrivReq(this,direction), providing its
own identity and the direction it is traveling. (The direction data item is computed inside the
state standby of Car, whose internal details are also omitted here.) The car also checks whether
the terminal it is approaching is in the set of terminals it stopsAt, setting the mode to stop or
pass accordingly.'®

If we cut now to the modeless statechart of Terminal in Fig. 10, we see that an arrivReq event
causes a new CarHandler to be instantiated, with the car’s identity and its direction as parameters.
Cut now to the CarHandler statechart in Fig. 9. It starts its life by executing its initialization
script, attached to its default entrance arrow. There it saves the two parameters in variables, and
proceeds to ask for a platform to be allocated. Having received confirmation of that being done and
a platform number, which it saves in platform, the CarHandler asks for the entrance rail segment of
that direction to be moved to the platform in question. Once that is confirmed, making it possible
for the car to glide neatly into the terminal, it generates the event arrivAck for the car to act
upon, with its own identity as a parameter. The car, who waited patiently in its waitEnter state,
instantiates the link to itsCarHandler, and branches off to stop or to make a departReq to its
handler, depending on whether it is scheduled to make a stop at the terminal in question or simply
to pass through. If it has to stop, the car waits for an alertStop from itsProximitySensor, and

13Note the reaction at the bottom of the Car statechart in Fig. 6, which adds a terminal to the list of scheduled
stops whenever a destination is selected. The destSelected event can be generated by the car’s DestPanel or by
the terminal’s one.
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Car

1 6
MaintenanceCar PassengerCar

Figure 11: Two kinds of cars

then leaves its arrival state (and we switch back to Fig. 6), removes the current terminal from its
list of stopsAt terminals, and enters either idle or standby, depending on whether it is scheduled
to visit any more terminals. If the car is to pass through the terminal it is approaching, it waits for
its departReq to be followed by a departAck from its handler, and proceeds (in Fig. 6) to resume
cruising. Upon receiving the departReq, the CarHandler (in Fig. 9 again) goes through a process
dual to the one it went through to set up the car’s entrance, causing an exit rail to be connected to
the platform. It then notifies the car that all is ready by a departAck, waits 10 seconds and then
frees the exit and platform and self-destructs.

9 Inheritance

Inheritance is one of the key topics in the OO paradigm. There is a large body of literature on
this topic, and much of it deals with the is-a subtyping, or subclassing, relationship between object
classes. We allow this relationship to be specified in the object-model diagram in the usual way,
by the standard triangular icon on the connecting edges. Fig. 11 shows part of the object-model
diagram, modified so that there are now two kinds of cars that are both subclasses of the abstract
class Car.

But what exactly does it mean for an object of type B to be also an object of the more general
type A?

In virtually all approaches to inheritance in the literature, the is-a relationship between classes
A and B entails a basic minimal requirement of protocol conformity, or subtyping, which roughly
means that it should be possible to ‘plug in” a B wherever an A could have been used, by requiring
that B’s protocols, i.e., what can be requested of it, are consistent with those of A. In addition,
a kind of structural conformity, or subclassing, is soften requested, to the effect that B’s internal
structure, such as its set of composites and aggregates, is consistent with that of A.

Nevertheless, these form a weak kind of subtyping, which says little about the behavioral confor-
mity of A and B. It requires only that the plugging in be possible without causing incompatibility,
but nothing is guaranteed about the way B will actually operate when it replaces A. Thus we don’t
have full substitutability, but merely plausibility. In fact, B’s response to an event or an opera-
tion invocation might be totally different from A’s. It turns out that guaranteeing full behavioral
conformity between a type and its subtype is technically very difficult, and much research is still
needed on this issue. Fortunately, however, behavioral conformity is too stringent in practice. Most
modelers do not expect the inheritance relationship between A and B to mean that anything A can
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Figure 12: Statechart of the abstract class Car

do B can do too and in the very same way. They are satisfied with guaranteeing that anything A
can do, B can be asked to do, and will look like it is doing, but it might very well do so differently
and produce different results. One of the reasons for this is that, for the most part, inheritance is
introduced to enable reuse, which is really an issue of convenience and savings: We want to be able
to spend less effort (and to decrease the chance of error) when respecifying things that have already
been specified for a more abstract class.

Object-oriented programming languages do not deal with abstract behavior at all, and therefore
their inheritance mechanisms do not address behavioral issues. In CT*, for example, a class derived
from a base class can turn the original behavior upside down. In contrast, our paper proposes a
behavior-intensive language set, which forces us to address the inheritance of behavior one way or
another. The crucial issue, of course, is in the statecharts. What should the relationship be between
A’s statechart and B’s, so that some kind of conformity results, and so that reuse is encouraged?

Authors who have addressed this question have felt that the modeler should somehow construct
B’s statechart from A’s, with some restrictions, but their recommendations differ. For example,
[CHBJ, [SGW], and [CD] all contain lists of such restrictions, with the recommendations of Cook
and Daniels [CD] being particularly detailed. ([R*, p. 111] contains some remarks about this issue
too.) It is possible to show, very easily in fact, that none of the recommended restrictions can
prevent the behavior from changing radically, which means that these proposals cannot establish
full behavioral conformity; and indeed they were not intended to.

We have essentially adopted this approach, but with code synthesis predominantly in mind.
Thus, the restrictions described below for constructing B’s statechart from that of its parent class
A were designed to be as helpful as possible when it comes to reusing parts of the code generated
from A in our C** implementational framework. Since we do not detail the transformation scheme
here, we shall not be able to fully justify our choices in this paper.

The main guideline is to base the two statecharts on the same underlying state/transition topol-
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operating

startManual / op

Figure 13: Statechart of MaintenanceCar

ogy. Thus, B inherits all A’s states and transitions, and while these cannot be removed certain
refinements are allowed. States can be modified by (i) decomposing a basic (atomic) state into
or-substates or into orthogonal components, (ii) adding substates to an or-state, and (iii) adding
orthogonal components to an anp-state. As to transitions, new ones can be added to B’s state-
chart, and certain modifications are allowed in the original inherited ones. Specifically, the target
state of an inherited transition can be changed, even to a completely different state (i.e., not nec-
essarily to a substate of the original state, as is done in [CD]), but the source state is not to be
changed. The reasons for this are, again, implementational.'* In addition, if the transition is la-
beled by trigger[condition]/action, then the condition can be modified and the action can be
overridden. To help highlight the difference between structural and behavioral conformity, note
that although a transition is not allowed to be explicitly removed, it can be removed implicitly by
making its guard false.

Let us say now that we have enhanced our object-model diagrams by the two kinds of cars, as
in Fig. 11. We might then provide most of the behavior of a car in the statechart of the abstract
class Car, as in Fig. 12. The statechart of PassengerCar would inherit the states and transitions of
this figure, and would add the standby state, which, together with some additional changes, would
lead to the original Fig. 6. The statechart of MaintenanceCar would be as in Fig. 13, including
the special manual state, in which instructions to the engine are given directly by the driver. (In
Fig. 13 we have left out many details, including some of those inherited from Fig. 11, such as the
inners of the operating state. Ruapsopy enables the inherited elements to be displayed in more
useful ways.)

14This difference between source and target is somewhat less restrictive than it sounds. We can achieve the effect
of changing the source to a lower-level state by adding a new transition with the same target but the lower-level
state as source. Since the semantics of our statecharts give priority to the transition leading out of the lower state,
we have what we want.
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10 Discussion

A number of research topics present themselves and seem worthy of pursuit. One of the most
interesting concerns inheriting behavior. We plan to carry out a careful investigation of the various
levels of behavioral conformity possible in a setup such as ours, and to address such issues as their
feasibility, enforceability and computational complexity.

Another reaserach topic involves a detailed investigation of possible productive relationships
between statecharts and MSC’s. For example, it would be nice to be able to synthesize a first cut
at the statecharts for an object model from the scenarios given in the MSC’s.

A few words are in order concerning the Ruapsopy tool. Although many aspects of Ruapsony
have not been addressed in this paper, including language-related ones such as active objects and
inter-object concurrency, the reader can get a pretty good feeling of its spirit by studying the
language set described here, and by contemplating the dedication to executability and analysis
present in its earlier sibling, Statemate [HT HP]. However, it is worth mentioning that Rmapsony
addresses many methodological issues too, and in ways that are quite in line with UML and the
recommendations in [B, CD, RT, SGW].'* For example, the question of how to present and view
overall system behavior is very important to a modeler, even though the entire system’s behavior
is given, in principle, by the collection of statecharts for all the object classes. Much has been said
and written about this and other such topics, and Ruapsopy provides several additional features to
ease the work of modelers and system analysts, such as message sequence charts.

As far as code synthesis goes, we feel that we are on the right track. It is our hope that the
code generated by Ruapsopy will turn out to be useful in bringing high-level modeling closer to the
desired final product.

Acknowledgements: We wish to thank Michal Politi and Alex Nerst, but especially Michael
Hirsch, for numerous helpful discussions and ideas.
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